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Abstract

We quantify the effect of weather and climate on the revenue of processing-tomato farm-

ers through yield and quality—quality being an understudied channel despite its role

in price determination. The widespread practice of screening out low-quality products

introduces selection bias into most estimates of the effect of weather and climate on

agriculture. Our novel field-level data allow us to estimate the magnitude of this bias.

In contrast to earlier work on irrigated crops, our study finds extreme temperatures

reduce both processing-tomato yield and quality, leading to reduced revenue. While

the yield effect dominates, failing to account for the quality effect leads to a significant

underestimate of the effect of temperature exposure on revenue—up to 20%. We pre-

dict climate change will significantly reduce yield and quality by century’s end absent

additional adaptation. Yield effects are overstated while quality effects are understated

when estimation relies on data on a subset of output that exceeds a quality threshold.

Empirical work on any agricultural product that fails to account for selection on quality

may misrepresent the climate change challenge.
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1 Introduction

The value of every agricultural product depends on its quality. Grain, meat, and milk are

graded according to USDA quality standards, and fresh produce is sorted by size, color, and

defects. Products grown under contract often face quality incentives, and low quality can

violate contractual obligations or make products unmarketable. But work quantifying the

economic impacts of extreme weather and climate change on agricultural production focuses

almost exclusively on yield (see Carter et al. (2018) or Ortiz-Bobea (2021) for summaries).

An important but understudied aspect of quality is its role in determining measured

yield. For many agricultural products, data are only collected for the subset of output

that is selected to be graded or harvested because it exceeds a minimum quality threshold.

Selection on quality biases unconditional measures of both quality and yield, which limits a

researcher’s ability to recover the true effect of weather and climate change on agricultural

outcomes. In short, ignoring quality biases estimates of the impact of weather and climate

change on agricultural productivity and farm income.

We ask two related questions: How does weather affect the revenues of specialty-crop

producers through both yield and quality, and what are the relative magnitudes of these

effects? To what extent does ignoring selection on quality bias estimates of the effects of

weather and climate change? We answer these questions using 12,000 field-level observations

of processing-tomato yield, quality, and grower practices from across California between 2011

and 2020. These data are collected by a large tomato processor for purposes of contracting

and payment and capture the decisions of hundreds of commercial farmers. Importantly,

these data capture information on quality selection and sorting. We use standard grid-

ded weather data from PRISM, the well-established panel model (Deschênes & Greenstone

(2007); Schlenker & Roberts (2009)), and a restricted cubic-spline specification to flexibly

estimate the effect of temperature exposure on yield, quality, and revenue.

This paper contributes to an emerging literature studying the effect of weather and

climate change on agricultural product quality. Kawasaki & Uchida (2016), Kawasaki (2019),

Dalhaus et al. (2020), and Ramsey et al. (2020) all find negative, economically important

effects of weather on grower revenue with quality being a key pathway. This paper adds to

this body of work by considering the pervasive issue of sample-selection bias introduced by

the way yield and quality data are generated. To the best of our knowledge, only Kawasaki

& Uchida (2016) control for the consequences of selection on quality in earlier work that
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estimated weather and climate change impacts on agricultural outcomes. Our setting and

novel data offer advantages relative to earlier work.

First, our measures of quality have economic significance. Growers are paid a price per

ton that depends on observed quality attributes, which introduces variation in price of ±20%.

We cleanly link quality attributes to price using observable contract terms established prior

to planting. The contract structure allows us to remove price variation driven by potentially

endogenous market conditions and isolate variation in price from variation in quality alone.

Second, quality attributes are precisely measured. California’s processing-tomato indus-

try has mandatory quality testing by an independent third party, so neither grower nor

processor can accidentally or intentionally misstate quality. We observe several individual

quality attributes for each field-year observation, which allows us to estimate the impact of

weather and climate change on each attribute individually.

Third, our data are unique in that we observe most of the selection and sorting process.

Selection in California’s processing-tomato industry is relatively small compared to other

settings because tomatoes are grown under contract and mechanically harvested and every

truckload must be graded at a third-party inspection station. This gives us the opportunity

to consider the consequences of selection for the resulting estimates.

We find that extreme weather conditions affect the revenue of growers despite their use of

irrigation. One extremely hot day (maximum temperature of 45◦C or 113◦F) causes yield to

decline by 0.9% relative to a day of average temperature. Quality also declines with exposure

to hot temperatures, causing growers to receive a lower price. One extremely hot day causes

prices to fall by 0.1% relative to a day of average temperature. Taking the effects together,

relative to an average day, one extremely hot day decreases revenue by 1.1%. Failing to

account for quality effects would bias downward the effect of exposure to heat on revenue by

up to 20%.

We predict the impact of climate change on future processing-tomato production using

model parameters that capture adaptive technologies and strategies used today. Accounting

for uncertainty in global emissions, climate models, and regression models, we find that

climate change will reduce yield and quality without additional adaptation. Assuming a

middle-of-the-road emissions scenario (SSP2–4.5), we predict that by the end of the century,

yield will be 13% lower than its 2011–20 levels with a 95% confidence interval of 6% to 31%.

We predict losses in quality between 1% and 5% by century’s end under a middle-of-the-road
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emissions scenario. Realized climate change impacts, however, will depend on how industry

adapts.

To recover unbiased estimates of temperature and climate change damages, researchers

rely on the assumption that observations of quality and yield accurately reflect conditions

at harvest. To our knowledge, this paper is the first to quantify the consequences of the

violation of this assumption. We replicate the sample-selection problem common in other

settings and find that selection leads to biased weather estimates. We find not only that

selection biases projections of climate change impacts but that these projections can be

misleading. Concerns of selection bias are not limited to papers focusing on quality but

apply to all studies that estimate yield or revenue effects but do not address selection.

Prior work on the effects of weather and climate change on agricultural production has

mostly focused on staple-crop yields (Schlenker & Roberts (2009); Lobell et al. (2011); Tack

et al. (2015); Chen et al. (2016); Gammans et al. (2017); Zhang et al. (2017); Shew et al.

(2020); Malikov et al. (2020); Schmitt et al. (2022)). Specialty crops are understudied

despite making up 40% of the total value of US crops (USDA NASS, 2017). By focusing

on an irrigated specialty crop, we extend a literature that has largely focused on rain-fed

staple crops. Irrigated specialty crops have distinct production functions and likely respond

differently to weather shocks than rain-fed field crops. Prior work finds that irrigation

essentially eliminates the negative effect of extreme heat and climate change on staple crop

yields (Shaw et al. (2014); Carter et al. (2016); Tack et al. (2017a); Wing et al. (2021))

and agricultural total factor productivity (Ortiz-Bobea et al., 2018). But we find that in a

setting in which irrigation has long been the rule rather than the exception, both yield and

quality are affected by exposure to hot temperatures and climate change, leading to lower

grower revenue.

2 The Setting

Tomatoes are the second-most-produced fruit or vegetable globally by value (behind pota-

toes) (FAO, 2023) and the second most consumed in the United States (USDA ERS, 2020).

Tomatoes can be either consumed fresh or processed into paste, ketchup, or a canned prod-

uct. They contain nutrients such as vitamin E, potassium, and lycopene that are important

to human health but often underconsumed (Wu et al., 2022).

Tomatoes destined for processing (henceforth “processing tomatoes”) are specific varieties,
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distinct from fresh tomatoes, bred and grown to enhance qualities desirable for harvesting

and processing into paste or for canning. California’s $1 billion processing-tomato industry

produces more than 90% of US processing-tomato output (California Department of Food

and Agriculture, 2019). In California, processing tomatoes are planted between February

and June to facilitate continuous harvesting between July and October. They are mostly

grown in outdoor fields in the San Joaquin and Sacramento Valleys (California Department

of Food and Agriculture, 2019). Processing tomatoes are a warm-season crop. During

California’s processing-tomato growing season, maximum temperatures average around 30◦C

and precipitation is scant. Growers irrigate to ensure crops receive enough water and can

tolerate high temperatures during the height of summer (Hartz et al., 2008).

Agronomic studies of processing tomatoes (Hartz et al., 2008) find that maximum tem-

peratures between 25◦C and 35◦C are ideal for vegetative growth, plant development, and

fruit set, so long as plants have sufficient water. Hot temperatures without adequate mois-

ture cause tomato plants to become stressed, affecting yield and quality. Temperatures

below 10◦C slow development and also affect quality. Lobell et al. (2007) find that Cali-

fornia’s processing-tomato yields benefit from warm temperatures during seedling growth in

April but decline when plants are exposed to maximum temperatures above 32◦C in June.

Marklein et al. (2020) estimate that 34%–87% of land on which tomatoes are grown in Cali-

fornia will no longer be suitable by midcentury because summer temperatures will be too hot;

they assume hot temperatures translate directly to heat stress, though, so their estimates

may be an upper bound. Cammarano et al. (2022) project a decrease in global processing-

tomato output by 2050, driven by temperatures rising above the optimal threshold (28◦C)

in California and Italian growing regions.

Our data are from a large tomato processor that purchases processing tomatoes under

contract from growers in the San Joaquin Valley, Sacramento Valley, and Central Coast

region of California. As opposed to purchasing products from a spot market, processors

contract with growers because input quality is crucial to produce consistent and high-quality

output. They incentivize growers by paying a price that depends on the quality of tomatoes

delivered. Contracts are negotiated between individual processors and the California Tomato

Growers Association on behalf of all growers. Negotiations establish each processor’s base

price, quality adjustments, and bonuses for the season, which processors then offer to growers

on a take-it-or-leave-it basis.
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Table 1 summarizes the eight quality attributes we observe and their effect on price. The

processor deducts a percentage of the base price for defects (mold, green tomatoes, worms,

material other than tomatoes and limited-use tomatoes). The processor has a incentive

program whereby growers receive a bonus (or penalty) if the brix (soluble solids or sugar

content) of delivered tomatoes is more (or less) than the average for the same variety in

the same county in which they were grown. Quality adjustments are proportional to the

quality achieved by growers as measured by the Processing Tomato Advisory Board (PTAB).

Finally, the processor values staggered harvesting and delivery to minimize bottlenecks at

processing facilities. Producers receive a bonus for delivering tomatoes early or late in the

season. Quality incentives are economically important and introduce price variation of ±20%

relative to average prices.

In most empirical settings, researchers observe only a subset of output that exceeds a

minimum quality threshold and is selected to be harvested or graded. Our data are unique in

that we observe most of the selection and sorting process. First, there is limited opportunity

to selectively harvest and grade processing tomatoes. Unlike many specialty crops, processing

tomatoes are mechanically harvested.1 Mechanical harvesters sort in the field, and we do not

observe what is rejected at harvest. However, according to the processor, there is minimal

sorting at harvest. The processor prefers to sort tomatoes at the processing plant because its

sorting machines are more accurate than the sorter aboard the harvester. Available empirical

evidence supports this claim. For example, we observe truck loads with up to 13% material

other than tomatoes, such as dirt or detached stems. We find that 12% of observations have

material other than tomatoes above the threshold above which loads could be rejected and

turned back to the processor (California Department of Food and Agriculture, 1997). This

is consistent with little screening at harvest.

The processor closely manages harvesting logistics because operating processing plants

near full capacity is key to profitability. Almost all processing tomatoes grown in California

are grown under a contract between a grower and processor (USDA NASS, 2021b). Contracts

are written for specific fields, and the processor typically harvests and transports tomatoes

to the processing plant. As a consequence, growers have little opportunity to strategically

sort prior to sale.

1See Just & Chern (1980) for details on the introduction and widespread adoption of mechanical harvesters

in California’s processing-tomato industry during the 1960s.
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Further, every truckload of processing tomatoes in California undergoes mandatory grad-

ing, including quality measurement, at an independent state inspection station prior to de-

livery. Administered by PTAB, the California Processing Tomato Inspection Program was

established in 1987 to create and uphold quality standards for California’s processing toma-

toes. Quality observations are shared with processors and growers and are used for price

determination.

Finally, the processor engages in a small degree of sorting wherein foreign matter and some

very low-quality tomatoes are deducted from the quantity paid for. However, in contrast to

most earlier research on the topic, we observe this sorting behavior. The processor records

total tons prior to sorting and paid tons after sorting. In sum, the institutional setting

means quality and yield observations accurately reflect conditions in the field; our analysis

is consequently less susceptible to selection problems common in other settings. The setting

also allows us to quantify the magnitude of biases introduced if we ignore sorting.

With proprietary data, there is a trade-off between internal and external validity. Using

data from a large processor offers a level of detail not available in public data. These

data come not from surveys nor field trials but from administrative records of every field

contracting with the processor between 2011 and 2020. Our data are at the field-year level

and contain a range of information about fields such that we can observe and control for

field-specific factors. Greater detail enhances internal validity but may come at the cost of

limited external validity.

One concern is that the hundreds of growers in this proprietary data set are not repre-

sentative of the broader processing-tomato industry. Several factors mitigate this concern.

The fields in our sample are geographically dispersed across 18 counties and closely match

the spatial distribution of output in California (Figure 1). Field-level yields averaged at the

county level are 10% higher than county yields reported by NASS, and the series are highly

correlated. Nevertheless, it is always possible that there is selection on unobservables that

affects the type of grower we observe and thus the external validity of our results.

Another concern is that our results are relevant only for processing tomatoes. However, as

noted above, virtually all agricultural producers are paid a price that depends on quality and

face similar incentives to processing-tomato growers, albeit with different contract provisions.

The practice of selective harvesting based on a quality threshold is pervasive across crops.

As a result, findings from this case study offer important insight into the effects of weather
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(a) Location of fields contracted with processor

in 2020

(b) California output in 2020, by county (USDA

NASS, 2021a)

Figure 1: California processing-tomato output

Notes: These maps show the spatial distribution of processing-tomato output in California according to two data sources:

proprietary data from a tomato processor, and public data from USDA NASS (2021a).

on yield and quality in other agricultural settings.

3 Data

3.1 Field-Level Data Set

As described above, we use data on all tomatoes grown and sold under contract to a large

tomato processor in California between 2011 and 2020. Observations are at the field-year

level (n = 11, 926) and include information on field acreage, tomato variety, total tons,

paid tons, yield, quality attributes, and the latitude and longitude of the field centroid.

Observations of quality attributes and tonnage come from mandatory PTAB testing prior to

delivery. The data also include information about growing practices, including planting and
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harvesting dates, irrigation technology, and the crop previously planted on a field. Field-level

observations are linked to an unbalanced panel of 438 growers and 247 grower groups. The

grower-group identifier links growers within the same network or organization.2

3.2 Contract Terms

We also observe the annual pricing terms negotiated between the processor and the California

Tomato Growers Association. All growers are offered the same contract in a given year

and do not individually negotiate pricing terms with the processor. Every year, a base

price is established at the start of the growing season that reflects current and expected

market conditions. Contracts also establish bonuses and deductions. As summarized in

Table 1, there are eight measures of quality, of which six are linked to bonuses or deductions.

In addition, growers receive an early- (late-)season bonus if they deliver tomatoes at the

beginning (end) of the growing season.

3.3 Outcomes

Yield for field i in year t is defined as total tons per acre: yieldit = total tonsit
acresit

. Total tons is

all tomatoes harvested from a field irrespective of quality. We exclude material other than

tomatoes, such as dirt or vines, from the total tons used to calculate yield.

Next, we calculate price for each field-year observation using observed quality and the

schedule of quality bonuses and deductions established at the beginning of the growing

season. We isolate variation in price driven by quality by applying the quality bonuses and

deductions to the 10-year-average base price. This removes common price movements driven

by market shocks while preserving common and individual quality shocks. This quality-

adjusted price is not the price received by growers but, effectively, a quality index with

weights equal to each quality attribute’s effect on price. Our method of calculating price

avoids potential simultaneity bias in our estimates of price and revenue effects (see Section

4 for more details). The quality-adjusted price is calculated as follows:

pricequality adjust
it = base price× (1− deductsit) + bonusit (1)

2An example of a grower group is four children dividing a family farm. Each child would have a distinct

grower ID, and the four would share a common grower-group ID.
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Here, base price is the average base price in the 10-year sample and deductsit and bonusit are

adjustments that depend on observed quality and date of delivery of tomatoes from field i

in year t.

Finally, we estimate field-level revenue per acre (henceforth “revenue”) by multiplying

quality-adjusted price by paid tons and dividing by acreage. The processor does not count

some damaged tomatoes toward the quantity for which producers are paid. The revenue

estimate uses paid tons, which are on average 6% less than the total tons used in the yield

calculation. The difference between total and paid tons is the tomato tonnage that is not

commercially viable and is disposed of by the processor. Revenue is thus calculated as

follows:

revenueit =
paid tonsit
acresit

× pricequality adjust
it (2)

3.4 Weather Data

We obtain weather data from PRISM (PRISM Climate Group, Oregon State University,

2020), which publishes daily temperature and precipitation data interpolated to 4 km grids

for the whole time span. We match weather data to each field-level observation by map-

ping the field centroids to PRISM grid cells. In Section 4.1, we explain how we translate

daily observations of temperatures into measures of temperature exposure for each field-year

observation.

3.5 Control Variables

We also gather data on several controls. We source information on tomato varieties from

AgSeeds (2020), which includes key attributes and use categories for each of the 159 varieties

in the processor data set. Finally, we match each field to its major soil type in the National

Cooperative Soil Survey (NRCS USDA, 2020).
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Table 2: Summary statistics

units mean sd min max
Area acres 57.31 43.45 0.3 323.2
Growing days no. 133.73 9.48 96.0 175.0
Yield tons/acre 52.43 13.37 6.7 99.0
Quality attributes

Brix 5.08 0.49 3.5 7.2
LU percent 1.43 1.17 0.0 13.1
MOT percent 1.64 1.23 0.0 13.3
Green percent 3.02 2.33 0.0 24.3
Mold percent 1.66 1.92 0.0 27.5
Worm percent 0.00 0.01 0.0 0.5
Color score 20.98 1.74 13.3 34.4
pH 4.41 0.09 2.9 4.8

Weather
Average minimum temperature ◦ C 13.79 1.08 9.8 17.6
Average maximum temperature ◦ C 31.20 1.62 24.5 35.4
Total precipitation mm 24.45 25.80 0.0 198.9

Soil type
Alluvium prop. 0.96 0.20 0.0 1.0
Eolian prop. 0.00 0.04 0.0 1.0
Organic material prop. 0.03 0.17 0.0 1.0
Lacustrine prop. 0.00 0.03 0.0 1.0
Residuum prop. 0.01 0.08 0.0 1.0

Irrigation technology
Drip irrigation prop. 0.75 0.43 0.0 1.0
Furrow irrigation prop. 0.12 0.33 0.0 1.0
Missing irrigation tech. prop. 0.11 0.31 0.0 1.0
Sprinkler irrigation prop. 0.02 0.14 0.0 1.0

Varietal attributes
Extended field storage variety prop. 0.55 0.50 0.0 1.0
Tomato spotted wilt resistant prop. 0.45 0.50 0.0 1.0
Fusarium Wilt resistant prop. 0.15 0.36 0.0 1.0
Powdery Mildew resistant prop. 0.04 0.19 0.0 1.0
Fusarium Crown Rot resistant prop. 0.00 0.05 0.0 1.0
Bacterial Spot resistant prop. 0.00 0.05 0.0 1.0
High solids prop. 0.06 0.23 0.0 1.0
High yield prop. 0.06 0.23 0.0 1.0
Early maturing prop. 0.13 0.33 0.0 1.0
Thin consistency prop. 0.14 0.35 0.0 1.0
Intermediate consistency prop. 0.23 0.42 0.0 1.0
Thick consistency prop. 0.58 0.49 0.0 1.0
Pear-shaped prop. 0.01 0.08 0.0 1.0

Notes: Summary statistics on all field observations from 2011 to 2020 (n = 11, 926).
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4 Methods

The aim is to estimate the effect of weather on processing-tomato yield, quality, and revenue.

We focus on the effect of temperature exposure and include precipitation as a control since

precipitation during the growing season is scant and growers control the amount of water

applied through irrigation.

Since we are interested in the direct and indirect effects of temperature exposure, we are

careful not to introduce bad controls—variables that themselves are outcome variables. A

key example in our setting is irrigation volume, which is a function of temperature and also

affects the outcome variable. Were irrigation volume included, the coefficient on temperature

exposure could be biased because some of the explanatory power of temperature might be

incorrectly attributed to irrigation volume.

We take an off-the-shelf econometric approach to emphasize that results are driven by

differences in focus and setting rather than differences in methodology. We follow the ap-

proach proposed by Schlenker & Roberts (2009) and adopted by Gammans et al. (2017) and

Shew et al. (2020), among others. Ortiz-Bobea (2021) provides a comprehensive summary.

We estimate the following equation:

yit =

∫
h

f(h)φit(h)d(h) + δzit + αg(i) + ψ(t) + εit (3)

Here, yit is a log-transformed outcome variable (yield, quality, or revenue) in field i in year t,

αg(i) is a grower fixed effect, and ψ(t) is a quadratic year trend. The first term characterizes

the relationship between temperature exposure and the outcome variable, where f(h) is

the marginal effect of temperature h and φit(h) is the growing-season density of exposure

at h for field i in year t. This continuous representation is not tractable for estimation

but can be approximated using the restricted cubic-spline specification detailed in Section

4.2. Field-year-specific control variables zit include variety-specific attributes (extended field

storage, various disease-resistance traits, high amount of solids, high yield, early maturing,

thin consistency, intermediate consistency, thick consistency, and pear shaped), irrigation

technology (drip, sprinkler, furrow), soil type (alluvium, eolian, organic material, lacustrine,

and residuum), growing-season precipitation, a dummy for planting week, and the difference

between actual growing days and estimated growing days specified by the seed manufacturer.

As with any annual crop, growers can implicitly influence their expected weather by

varying the planting date. Specifically, tomatoes planted earlier in the growing season are
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expected to be exposed to cooler temperatures than tomatoes planted later. This implies

that weather is endogenous and coefficients on temperature exposure may be biased. We

include dummies for planting week of year to account for endogeneity of weather. Failing to

control for planting date biases estimates of effects on quality, but the results for yield and

revenue are largely unchanged (see Appendix A).

The error term εit is likely heteroskedastic, spatially correlated, and temporally correlated

among similar growers over time. We use heteroskedasticity-robust standard errors clustered

by grower group3 and county-by-year. We cluster at the grower-group level to account for

possible dependence among growers within the same grower group. We do not cluster by

year, as we observe only 10 years. Even in a multiway cluster, too few clusters in any

cluster group will result in incorrect statistical inference (Cameron et al., 2011). Instead, we

cluster at the county-by-year level to account for spatial correlation. Results are robust to

using spatial heteroskedasticity- and autocorrelation-consistent errors that allow for spatial

correlation between nearby fields and serial correlation in panel data (see Appendix B).

We include grower fixed effects αg(i) and individual growers can be associated with mul-

tiple fields per year; on average, each grower is associated with 27 field-year observations.

This controls for time-invariant, grower-specific factors that may be related to outcome or

explanatory variables. Our preferred specification uses grower fixed effects, as regular crop

rotation results in an unbalanced panel of field-year observations. Results are robust to using

field fixed effects in place of grower fixed effects (see Appendix C). Results are also robust to

replacing quadratic year trends with (a) a linear year trend and (b) county-specific quadratic

year trends.

We do not use year fixed effects, as they would absorb much of the useful variation in

temperature exposure used to identify the effects of interest. Inclusion of state-by-year fixed

effects (equivalent to year fixed effects in our setting, as we only observe a single state)

in Deschênes & Greenstone (2007) is critiqued by Fisher et al. (2012) because “state-by-

year absorb almost all variation and the identification rests on very slim margins, so even

small amounts of measurement error will be greatly amplified.” When excluding year fixed

effects, we observe considerable variation in temperature exposure (Appendix D shows the

distribution of temperature exposure across counties).

Since we do not include year fixed effects, a reasonable concern is that our estimates

3Recall that the grower-group identifier links growers within the same network or organization.
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of price and revenue effects suffer from simultaneity bias. Simultaneity may be caused by

equilibrium in the tomato market: when quantity is low, price is high. We avoid this issue

by applying the quality adjustments to an average price, which removes variation in price

(and revenue) that stems from market conditions and preserves variation caused by quality,

as detailed in Section 3. Results using contemporaneous prices are shown in Appendix E.

4.1 Estimating Temperature Exposure

We translate daily observations of minimum and maximum temperatures into a measure of

temperature exposure for each field-year observation. For each day of the growing season,4

we estimate how many hours are spent in 1◦C temperature intervals by fitting a sinusoidal

curve between each day’s minimum and maximum temperature. We then sum over days

to estimate the number of days spent in each 1◦C temperature interval during the entire

growing season. The result is xit, a 1-by-J vector of temperature exposure for field i during

the growing season in year t, where J is the number of temperature bins. In our setting, we

bin temperatures from 5◦C to 41◦C, so J = 37.5 The vector is thus

xit =
(
xit,5 xit,6 . . . xit,40

)
, (4)

where xit,j is the number of days spent between j◦C and (j+1)◦C during the growing season

in year t.

This approach has several advantages. First, it addresses the empirical challenge of mixed

frequency between regressor and outcome variables. We have many daily observations of

minimum and maximum temperatures to match with one annual observation of an outcome

variable. Averaging daily temperatures across the growing season would mask differences

in exposure to extreme temperatures. The second advantage of this approach is that it

preserves the temperature distribution. This allows us to uncover the marginal effect of

exposure to different temperatures.

4The growing season starts on the day of planting and ends on the last day of harvest for each field.
5Temperatures range from −1◦C to 45◦C. We aggregate temperature exposure below 5◦C and above 41◦C

to avoid bins with little exposure.
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4.2 Restricted Cubic-Spline Specification

Next, we choose a functional form to characterize the relationship between outcome vari-

ables and temperature exposure. Midrange temperatures are thought to be ideal for yield

and quality of processing tomatoes, but yield and quality may be reduced by hot or cool tem-

peratures if exposure occurs during key stages of a plant’s growth cycle (Hartz et al., 2008).

Thus the relationship between temperature exposure and outcome variables is nonlinear.

To capture nonlinearity in the response of the outcome variable to temperature, we

estimate a restricted cubic-spline model (otherwise known as a natural cubic spline). The

restricted cubic-spline model has become popular because it offers several benefits over alter-

native methods for estimating nonlinear temperature effects (Berry et al. (2014); D’Agostino

& Schlenker (2016); Ortiz-Bobea et al. (2019); Blanc & Schlenker (2020); Bucheli et al.

(2022)). First, it offers smooth, parsimonious semiparametric estimation without needing to

define critical temperature thresholds. Second, it imposes the restriction that its tails (that

is, before the first knot and after the last knot) are linear. This reduces overfitting in the

data-sparse tails of the temperature distribution, an issue with the polynomial and cubic-

spline functional forms. We estimate a piecewise-linear degree-day model as a robustness

check. Overall, results from the two specifications—a piecewise-linear degree-day model and

a restricted cubic-spline model—are consistent in magnitude and significance (see Appendix

F).

We identify K = 4 temperatures that split the distribution of temperature exposure

by interval into quintiles. This accounts for the fact that less time is spent at extreme

temperatures. Unlike in other models, knot placement does not strongly influence the cubic-

spline results because the marginal effect of exposure is allowed to vary smoothly between

knots.

We then introduce a basis matrix B and a vector of coefficients Γ. B is J-by-P , while Γ

is P -by-1, where P is the number of temperature parameters to be estimated and is directly

related to the number of knots K. A restricted cubic spline with K = 4 knots results in

P = 3, which is smaller than the number of temperature-exposure bins J = 37. This is an

advantage of the spline model: it reduces the dimensionality while still allowing for flexible

semiparametric estimation. The derivation of the basis matrix B that corresponds to the

restricted cubic spline is shown in Appendix G.
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Under these assumptions, we can write Equation 3 as follows:

yit = xitBΓ + δzit + αg(i) + ψ(t) + εit (5)

Stacking n observations across fields and years gives us Equation 5 in matrix notation:

Y = XBΓ + δZ + α + ψ + ε (6)

Here, X is an n-by-J matrix of temperature exposure, and Y , δZ, α, ψ, and ε are n-by-1

vectors of outcomes, controls, grower fixed effects, quadratic time trends, and errors, respec-

tively.

After estimation, we recover the marginal effect of temperature exposure evaluated at

each interval. We multiply the vector of estimated coefficients Γ̂ by the corresponding B

matrix. The resulting J-by-1 vector β̂ is the marginal effect of one additional day in each

temperature bin j = 1, . . . , J :

β̂
J×1

= B
J×P
× Γ̂

P×1
(7)

Last, we derive an estimate of the variance-covariance matrix for β̂:

v̂ar(β̂)
J×J

= B
J×P
× v̂ar(Γ̂)

P×P
× B′

P×J
(8)

5 Results

Figure 2 reports results for the effects of temperature exposure on our three key outcome

variables: yield, quality, and revenue. In each figure, the top graph shows the effect of

an additional 24 hours in a given temperature interval on the outcome variable relative to

24 hours at 26◦C, which represents the average temperature. The 95% confidence intervals

account for the possibility of heteroskedasticity, spatial correlation, and temporal correlation

in the errors. The omitted category, 26◦C, has no confidence interval. The gray vertical lines

show the positions of the knots. The histogram at the bottom of the frame shows the average

exposure to each temperature interval during the growing season across all fields in all years.

Regarding yield, we find that the optimal temperature is around 28◦C. Exposure to

temperatures above 35◦C leads to significantly lower yields. An additional 24 hours of
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exposure to 40◦C temperature decreases yield by almost 2% on average relative to 24 hours at

the average temperature. Exposure to temperatures below 10◦C causes a small but significant

decline in yield—0.7%—relative to 24 hours at the average temperature.

We isolate variation in price driven by quality by applying quality adjustments to the

10-year-average base price. Regarding quality, we find an optimal temperature around 20◦C.

Quality declines with exposure to hot conditions. An additional 24 hours of exposure above

30◦C causes quality to drop by up to 0.2% relative to 24 hours at the average temperature.

Results for specific quality defects and bonuses can be found in Appendix H, Figures A.11

and A.12. Defects—specifically, limited-use tomatoes, material other than tomatoes, green

tomatoes, and mold—all increase with exposure to hot temperatures, although a lack of pre-

cision in the estimates means we cannot rule out null effects. Exposure to cool temperatures

relative to average temperatures leads to fewer limited-use tomatoes and higher quality. The

effect of temperature on the solids bonus is imprecise, but the point estimate declines with

exposure to hot temperatures.

Revenue is maximized with exposure to temperatures around 27◦C. An additional 24

hours of exposure to 40◦C temperature decreases revenue by 2.3% compared to 24 hours

at the average temperature. This is expected since both yield and quality decline under

hot conditions. Exposure to temperatures below 10◦C causes a smaller but still significant

decrease in revenue—almost 1%—relative to 24 hours at the average temperature.

An alternative way to interpret our results is to examine the effect of an extremely hot

day.6 Unsurprisingly given our results above, one extremely hot day causes losses in yield,

quality, and revenue. One extremely hot day causes yield to decline by 0.9% relative to a day

of average temperature. Quality also declines with exposure to hot temperatures, causing

growers to receive a lower price. One extremely hot day causes prices to fall by 0.1% relative

to a day of average temperature. Taken as a whole, we find that, relative to an average day,

6To calculate the effect of one extremely hot day, we first estimate the proportion of the day spent in each

1◦C temperature interval by fitting a sinusoidal curve between 23◦C and 45◦C (the minimum and maximum

temperatures for the hottest day observed in our sample). The result is xhot, a 1-by-J vector of temperature

exposure for an extremely hot day, where J is the number of temperature intervals. We then multiply xhot

by β̂, a J-by-1 vector of the marginal effect of one additional day in each temperature interval j = 1, . . . , J .

This gives an estimate of the effect of one extremely hot day on each outcome (yield, quality, or revenue).

We repeat this process for an average day (maximum of 31◦C and minimum of 14◦C, the average maximum

and minimum in our sample), which serves as the comparison group.
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one extremely hot day decreases revenue by 1.1%.

Appendix I shows the estimated effects of the control variables. Precipitation reduces

yield (and therefore revenue), but the magnitude is relatively small—a one-standard-deviation

increase in precipitation decreases yield by 0.2% on average. Fields with drip irrigation are

associated with higher yields on average relative to fields using furrow or sprinkler irrigation

techniques. Soil type and varietal characteristics are also associated with yield and quality.

For example, an early variety, one that requires fewer days to reach maturity and there-

fore has a shorter season, is associated with lower yields but higher quality on average. The

quadratic year trend is insignificant, suggesting that yield and quality were largely stationary

over the course of our 10-year sample.

5.1 Decomposition

We find that temperature exposure significantly affects both yield and quality. However, the

relative importance of each pathway is unclear a priori. Here, we decompose the effect of

temperature exposure on revenue per acre (total effect) into the effect on revenue driven by

yield (yield effect) and the effect driven by quality (quality effect) as shown in Equation 9.

This allows us to answer two questions. What is the relative importance of the yield and

quality effects? And, perhaps more importantly, would the estimates of the revenue effect

be biased if quality were omitted?

total effect = yield effect + quality effect (9)

The total effect, which captures both the yield and quality pathways, is equal to the

effect of temperature exposure on revenue estimated above. Since we use log-transformed

variables, the yield effect is equal to the effect of exposure on yield estimated above. The

quality effect, however, is slightly larger than the effect of exposure on the quality index

shown above. Recall that revenue is a function of paid tons, and the processor does not

pay producers for some poor-quality tonnage. Therefore, quality can affect revenue via

(a) changes in price captured in the quality index and (b) changes in paid tonnage. By

rearranging Equation 9 and estimating the quality effect as the difference between the yield

effect and total effect in Equation 10, we capture the effect of temperature on both price and
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Figure 2: Restricted cubic-spline results
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Figure 2: Restricted cubic-spline results

Notes: For each figure, the graph at the top of the frame shows the effect of an additional 24 hours in a given temperature

interval on the outcome variable relative to 24 hours at 26◦C. The histogram at the bottom of the frame shows the average

exposure to each temperature interval during the growing season across all fields in all years.
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Figure 3: Decomposing the effect of exposure on revenue into the yield effect and quality

effect

Notes: Each line shows the effect of an additional 24 hours in a given temperature interval on the outcome relative to 24 hours

at 26◦C. The total-effect line shows the effect of temperature exposure on revenue through both the yield and quality pathways.

The yield-effect and quality-effect lines show the contributions of yield and quality to the total revenue effect.

unpaid tons:
quality effect = total effect− yield effect

= β̂ln(revenue per acre) − β̂ln(yield)
(10)

As shown in Figure 3, while the yield effect dominates grower revenue, quality also plays

an important role. Without access to data on output quality, a researcher can only recover

the yield effect: an additional 24 hours of exposure to 40◦C temperature decreases revenue

by 1.8% compared to 24 hours at the average temperature. This underestimates the effect of

exposure on revenue by up to 0.5 percentage points, or 20% of the point estimate at 40◦C.

Failing to account for quality’s effect on revenue biases estimates of temperature on revenue.

5.2 Selection

In almost all published work, to recover unbiased estimates of temperature and climate

change damages, researchers implicitly assume observations of quality and yield accurately

reflect harvest conditions. For many agricultural products, data are available only for the
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subset of output that producers select to be graded. This leads to a selected sample and

biases observations of both quality and yield—for example, if only high-quality products are

graded, yield will be underestimated and quality overestimated.

A benefit of our setting is that selection is minimal and, thanks to our partnership with

the processor, we observe most of the selection that occurs. Recall from Section 2 that

observations of quality and yield are close to those in the field because of mandatory grading

as well as contracting and harvesting practices. Moreover, the processor engages in sorting

in which some damaged tomatoes are not counted toward the quantity for which producers

are paid. We are able to observe this sorting through differences in total tons (before sorting)

and paid tons (after sorting); the paid-tons measure is on average 6% smaller than the total-

tons measure.7 This gives us the opportunity to consider the consequences of selection for

the resulting estimates.

To simulate estimates with selection, we assume that the researcher only observes yield

and quality of the paid tons—that is, a portion of total tons is now unobserved. Consistent

with the processor’s sorting out low-quality tomatoes, we assume that unobserved tons had

quality defects. Yield under selection is artificially reduced because it is calculated using

a smaller tonnage (paid tons) than what is actually harvested from the field (total tons).

Quality under selection is artificially improved because some tonnage with defects is no

longer observed. Figure 4 compares the actual distribution of defects to its distribution with

selection.

A priori the sign of any bias is unclear; however, our first hypothesis is that the effect of

exposure to high temperatures on quality will be biased toward zero under selection. This

follows from the result that high temperatures reduce quality and from the assumption that

lower-quality products are being withheld. Our second prediction is that the negative effect

on quality will be incorrectly assigned to yield, causing the negative yield effect to increase

in magnitude.

We compare estimates from our preferred specification with estimates using observations

with added selection. Consistent with our hypothesis, the estimated effect of exposure on

yield is biased upward by up to 9%. The estimated effect of high temperatures on quality is

7Recall that total tonnage includes all tomato tonnage regardless of quality. Paid tonnage does not

include some low-quality tomatoes that are not commercially viable and are disposed of by the processor.

Both total tons and paid tons exclude material other than tomatoes such as dirt or vines.
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Figure 4: Empirical cumulative distribution function of defects

Notes: The actual CDF shows the distribution of defects observed across fields and years in our sample, in which selection

is known to be minimal. The CDF with selection shows the distribution of defects when we simulate selection on quality as

experienced in other settings.

biased toward zero under selection by up to 60%. The upward bias in yield partially offsets

the downward bias in quality. However, bias still remains, and the effect of exposure to high

temperatures on revenue is attenuated by up to 5%.

These biases are also reflected in estimates of the effect of an extremely hot day. Under

selection, one extremely hot day causes a 0.07% decrease in price compared with 0.1% without

selection. One extremely hot day decreases yield by 1% under selection compared with 0.9%

without selection. Overall, the effect of an extremely hot day on revenue is smaller under

selection than without selection: 1% versus 1.1%. Our results suggest that estimates will be

biased in settings with selection but the magnitude will depend on (a) the actual effect of

weather on quality and (b) how much selection is occurring.
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Figure 5: Selection bias

Notes: These graphs show the effect of an additional 24 hours in a given temperature interval on the outcome variables relative

to 24 hours at 26◦C. The estimate line shows results using our preferred specification. The estimate with selection shows results

using yield and quality observations with added selection as experienced in other settings. The difference between the two lines

shows the degree of bias caused by selection.
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6 Projected Impacts of Climate Change

The results above suggest processing tomatoes are susceptible to extreme temperatures. We

now ask: how will climate change affect the production of processing tomatoes? We predict

future yield, quality, and revenue outcomes as though tomato plants are exposed to hotter

temperatures as projected in climate models. We then compare predicted outcomes using

realized weather with predicted outcomes using future weather to estimate the impacts of

climate change. While rain-fed staple crops have been extensively studied, this is among the

first efforts to forecast the effect of climate change on the yield and quality of specialty crops

despite their representing 40% of the total value of US crops (USDA NASS, 2017).

In estimating the impact of climate change on economic outcomes, uncertainty stems

from several sources. First, there is statistical uncertainty in the historical relationship

between weather variables and the outcomes of interest. Second, future global emissions

of greenhouse gases are uncertain. Third, conditional on a particular pathway of global

emissions, there is uncertainty about how that level of emissions will change the climate

of a particular location. While climate models generally agree on the overall direction of

temperature and precipitation trends, there is disagreement on the exact magnitudes—that

is, there is climate-model uncertainty. Our estimates of climate change impacts account for

these three sources of uncertainty following best practices in Burke et al. (2015).

As with any projection, there are limits on how much uncertainty we can incorporate into

our impact estimates. It is difficult to know how producers, processors, seed manufacturers,

and other industry participants will respond to future changes in climate. For example,

the processing-tomato industry may become more resilient to hotter temperatures through

developing and adopting varieties better suited to a warmer climate. On the other hand,

decreasing availability of water for irrigation may make processing-tomato plants more vul-

nerable to warming temperatures than historical relationships imply. Modeling the potential

effects of these factors (and others8) on future processing-tomato production is beyond the

scope of this paper. We instead assume the modeled relationship between temperature expo-

sure and processing-tomato output that captures adaptive technologies and strategies used

during our sample period will continue.

We now describe our approach to projecting the impacts of climate change following

8We also do not account for potential yield benefits from the predicted increase in atmospheric carbon

dioxide concentrations (Rangaswamy et al. (2021); Cheng et al. (2022)).
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best practices outlined in Burke et al. (2015). First, we select four global climate models

included in Coupled Model Intercomparison Project Phase 6 (CMIP6) and used by the

Intergovernmental Panel on Climate Change in its latest assessment report (IPCC, 2023):

Access-CM2, HadGEM3-GC31-LL, EC-Earth3, and EC-Earth3-Veg. These models best

capture relevant aspects of California’s climate (Krantz et al., 2021) and were statistically

downscaled by Pierce et al. (2023) to a 3 km resolution and daily time step (available on

Cal-Adapt (2023)). To account for uncertain future global emissions, we present results for

two emissions scenarios in CMIP6: SSP2–4.5, a middle-of-the-road global emissions scenario,

and SSP5–8.5, a very high global emissions scenario.

To account for climate-model uncertainty, we implement the model-democracy approach

routinely used by climate scientists (Burke et al., 2015). We use four climate models and

collect multiple climate projections, or ensembles, with varying baseline conditions from each

model when available. This yields a total of 10 projections for each emissions scenario. Each

projection is given an equal vote in determining the impact estimate.

For each combination of projection and emissions scenario, we use a wild-cluster boot-

strap to account for statistical uncertainty about the historical relationship between weather

variables and the outcomes. The wild-cluster bootstrap preserves spatial dependence in the

resampled data and performs well even with relatively few clusters (Cameron et al., 2011).

The wild-cluster bootstrap procedure proceeds as follows: First, we obtain residuals ε̂ and

predicted coefficients after estimating our preferred regression model in Equation 6. Next,

we generate 1,000 bootstrap samples denoted by ∗ and indexed by b for each grower-group-

and-year cluster g:

Y ∗bg = XgBΓ̂ + δ̂Z + α̂ + ψ̂ + ε∗bg , ε∗bg = w∗bg ε̂g (11)

Here, ε∗bg are the randomly reshuffled residuals ε̂g from the same grower-group-and-year

cluster multiplied by a wild weight w∗bg drawn from the Rademacher distribution (−1 or 1

with equal probability). We then regress Y ∗b on X to obtain Γ̂∗b. Finally, we predict Ŷ ∗bitp by

replacing xit, temperature exposure experienced in field i during year t with xip, temperature

exposure projected to be experienced in field i in year p at midcentury (p = 2041, . . . 2050)

or end of century (p = 2091, . . . , 2100). All other controls and fixed effects are kept at their

year-t levels. This simulates outcomes as if the field was exposed to temperatures from future

year p instead of the actual temperatures experienced in year t.
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We estimate the climate change impact for each bootstrap replication as the difference

between the predicted outcome using actual temperatures and predicted outcomes using

projected temperatures from two time frames: midcentury (2041–50) and end of century

(2091–2100). Finally, we stack the 1,000 bootstrap estimates from each of the 10 projections

into a vector of 10,000 impact estimates to form a distribution that accounts for both sta-

tistical and climate uncertainty. We construct a confidence interval by taking the 2.5th and

97.5th percentiles to calculate the range containing 95% of impact estimates.

Perhaps unsurprisingly given the results above, we find that climate change leads to

economic damages for processing-tomato growers absent additional adaptation, as shown

in Figure 6. By midcentury, yield is predicted to be significantly lower than its 2011–20

levels. We estimate median yield losses of 5% or 9% depending on the emissions scenario.

The median effects on quality by midcentury are negative in both emissions scenarios, but

the 95% confidence intervals include zero. By the end of the century, yield and quality are

expected to both decline significantly by 13% and 2% respectively under a middle-of-the-road

emissions scenario, with even larger losses predicted under a very high emissions scenario

(53% and 8% respectively). The projected impacts of climate change on revenue are provided

in Appendix J.
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Figure 6: Projection of climate impacts by midcentury (2041–50) and end of century (2091–

2100) relative to a 2011–20 baseline
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Figure 6: Projection of climate impacts by midcentury (2041–50) and end of century (2091–

2100) relative to a 2011–20 baseline

Notes: These graphs show the estimated impact of climate change on the outcome variables by midcentury and end of century,

assuming no additional adaptation. Each point is an estimate of the projected impact derived from a single combination

of projection, emissions scenario, and wild-cluster bootstrap replication. The thick black lines represent the median impact

estimate, and the shaded gray areas represent the 95% confidence intervals that account for statistical and climate uncertainty.
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In Section 5.2, we replicated the sample-selection problem, common in other settings,

in which quality losses are incorrectly assigned to yield losses. We found estimates of the

damages from exposure to hot temperatures on quality are artificially reduced by selection

bias, while yield damages from exposure to hot temperatures are artificially increased. Here,

we ask: does selection also bias estimates of climate change impacts?

We repeat the climate change–impact estimation procedure above using yield and quality

observations with added selection as experienced in other settings. Figure 7 compares the

median climate change impacts with and without selection (the full results with selection

are available in Appendix K).

We find that selection biases the magnitude of climate change estimates and, in some

cases, the bias is large enough that estimates are in the wrong direction. Climate change

damages to yields are increased by selection: the median estimate increases from −13%

without selection to −18% with selection by the end of the century under a middle-of-

the-road global emissions scenario. Selection also biases quality results to the extent that

damages are incorrectly identified as benefits: the median estimate without selection is −2%

compared to 1% with selection by the end of the century under a middle-of-the-road global

emissions scenario. Climate change–impact estimates could be misleading when researchers

rely on data that suffer from selection on quality.
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Figure 7: Selection bias in median climate impacts by midcentury (2041–50) and end of

century (2091–2100)
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Figure 7: Selection bias in median climate impacts by midcentury (2041–50) and end of

century (2091–2100)

Notes: These graphs show the median effect of climate change on the outcome variables by midcentury and end of century,

assuming no additional adaptation. The median-estimate point shows results using our preferred specification. The median

estimate under selection shows results using yield and quality observations with added selection as experienced in other settings.

The arrow connecting the two points shows the direction of bias caused by selection.
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7 Discussion and Conclusion

Studies of the impacts of climate change on agriculture generally focus on yield (see Ortiz-

Bobea (2021)) or farmland values (for example, Mendelsohn et al. (1994); DePaula (2020);

Bareille & Chakir (2023)). More recent work explores alternative effects of weather shocks

and climate change on agriculture such as pest and disease pressure (Kawasaki, 2023) and

planting and harvesting decisions (Cui (2020); Cui & Xie (2022)), but with a few notable

exceptions, ignore quality. Quality matters for essentially every agricultural product because

of its role in contractual arrangements and price determination. We used novel data from a

large tomato processor to study the effects of temperature exposure on yield, quality, and

grower revenue. We found that exposure to hot temperatures reduces grower revenue through

two channels: yield and quality. Failing to account for quality’s effect biases estimates of

temperatures on revenue by up to 20%. Our uniquely detailed data gives us a complete and

precise picture of how weather and climate change affect product quality.

Prior work uses observational data to analyze effects of weather and climate on the qual-

ity of different agricultural products, including rice and wheat (Kawasaki & Lichtenberg

(2014); Kawasaki & Uchida (2016); Kawasaki (2019)), apples (Dalhaus et al., 2020), peanuts

(Ramsey et al., 2020), tobacco (Ramsey & Rejesus (2021); but the consequences of climate

change are not considered), and wine (see Ashenfelter & Storchmann (2016)). Of these pa-

pers, Kawasaki & Uchida (2016), Kawasaki (2019), Dalhaus et al. (2020), and Ramsey et al.

(2020) link changes in quality to grower revenue to quantify the economic consequences of

weather and climate change. Dalhaus et al. (2020) infer quality from unexplained differences

in price. Kawasaki & Uchida (2016) and Kawasaki (2019) use quality grades, which inhibits

their ability to analyze individual quality attributes. Ramsey et al. (2020) observe one as-

pect of peanut quality, kernel size, and proxy for its effect on price using value formulas

from the Commodity Credit Corporation’s loan rates. It is unclear whether this captures

actual market pricing and all relevant aspects of quality. In our setting, quality attributes

are precisely measured by a third party, rather than inferred, and directly linked to price

using a schedule of bonuses and deductions established prior to planting.

In addition, studying the effects of climate change on agricultural production with ob-

servational data presents identification challenges. Typically, data are available only for the

subset of output that growers choose to market because it exceeds an implicit or explicit
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quality threshold.9 For example, in Japan, around two-thirds of rice output undergoes the

costly process of being graded while the remaining lower-quality output is withheld for self-

consumption or sale in informal markets (such as sales to local households or for animal

feed) (Kawasaki & Uchida, 2016). In the United States, observations of corn sold on formal

markets would miss between 6%–15% of output used on farm (USDA ERS & NASS, 2023).

Observational data for hand-harvested crops, such as berries, stone fruit, apples, and leafy

greens, likely also suffer from selection. Harvesting guidelines (for example, instructions to

only pick high-quality produce), adequate access to labor, and how labor is paid can all affect

the observed quality of hand-harvested crops (for example, Hill & Beatty (2020)).

The practice of screening out low-quality products introduces selection bias into weather

and climate change estimates. Quality effects are biased when low-quality products are not

observed. Yield estimates will also be biased if quantities are measured after farmers screen

out low-quality products. In this situation, quality effects will be falsely attributed to yield,

and estimates of the effect of weather on both yield and quality will be biased. For example,

selection might explain why prior work finds that wet conditions toward the very end of the

season appear detrimental to crop yields (Ortiz-Bobea et al., 2019). Wet conditions around

harvest typically result in quality problems in grain that may cause growers to withhold low-

quality grain from the market. If this withheld grain is not counted toward output totals, an

outside observer will incorrectly ascribe the effects of wet conditions around harvest to yield

instead of quality. Concerns about selection are not limited to papers focusing on quality

but are present in all studies estimating the effects of weather on yield or revenue that do

not address selection.

Processing tomatoes in California are almost always grown under contract, mechanically

harvested, and graded at an independent state inspection station. These institutional factors

mean that our analysis is unlikely to suffer from selection bias. It also gave us the opportunity

to estimate selection akin to that experienced in other settings and quantify the magnitude

of the bias. We found that screening out low-quality products biases the negative effect of

hot temperatures on quality toward zero and that this negative effect on quality is incorrectly

assigned to yield. We also found that error caused by selection is magnified when projecting

9An exception is data from field trials such as those used by Ramsey et al. (2020), Tack et al. (2015)

and Tack et al. (2017b), which are less likely to suffer from selection bias but may be less representative of

commercial growing practices.
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the impact of future warming under climate change. We found that reductions in quality

due to climate change are underestimated in the presence of selection and that, in most

cases, climate change is incorrectly predicted to improve quality. Reductions in yield from

warming under climate change are biased upward by selection. These results illustrate the

consequences of data limitations that should be carefully considered in all empirical work.

Finally, continued warming predicted under climate change is a cause for concern. Based

on retrospective results, we see that growers cannot fully mitigate damages caused by extreme

heat, indicating that they will be susceptible to harm from the continued warming predicted

as the climate changes. Absent additional adaptation, we predict climate change will cause

both yield and quality of California’s processing tomatoes to decline by the end of the

century. This contrasts with previous findings that irrigation can mitigate the effects of

heat on staple crop yields in settings in which irrigation is the exception rather than the

norm (Shaw et al. (2014); Carter et al. (2016); Tack et al. (2017a); Wing et al. (2021)).

Our setting differs in that production relies on irrigation. Our results suggest that irrigated

agriculture is susceptible to climate change and that irrigation’s mediating effect on heat

may be short-lived. The results above emphasize the need for investment in research into

and development of heat-tolerant varieties and related technologies.

A limitation of our research is its focus on a single processor in one agricultural industry.

While the specificity of our setting potentially limits the external validity of our results,

our study benefits from detailed and reliable observations of field-level outcomes that cap-

ture farmers’ optimizing behavior. This provides new insights—often hidden in analyses

of county-level averages—into the effect of weather and climate on individual commercial

agricultural producers.
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A Endogeneity in Weather
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Figure A.1: Results without a planting date control
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Figure A.1: Results without a planting date control

Notes: For each figure, the graph at the top of the frame shows the effect of an additional 24 hours in a given temperature

interval on the outcome variable relative to 24 hours at 26◦C. The histogram at the bottom of the frame shows the average

exposure to each temperature interval during the growing season across all fields in all years.
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B Spatial Heteroscedasticity and Autocorrelation Con-

sistent Errors

Our preferred specification clusters standard errors by grower group and county by year to

account for the possibility of heteroskedasticity, spatial correlation, and temporal correlation

in the errors. An alternative method to correct for possible dependence in standard errors is

to estimate spatial heteroscedasticity and autocorrelation consistent (HAC) errors that allow

for spatial correlation and serial correlation in panel data (Conley, 1999). Using code from

Hsiang (2010), we allow for spatial correlation for field observations that are within 200km

(124 miles) of each other. The correlation between observations is assumed to decay linearly

with distance.

Results are robust to using spatial HAC errors, however the appropriateness of using this

method on an unbalanced panel remains an open question.
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Figure A.1: Results using spatial HAC errors

Notes: For each figure, the graph at the top of the frame shows the effect of an additional 24 hours in a given temperature

interval on the outcome variable relative to 24 hours at 26◦C. The histogram at the bottom of the frame shows the average

exposure to each temperature interval during the growing season across all fields in all years.
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C Robustness Checks

Our preferred specification uses grower fixed effects. Grower fixed effects capture time-

invariant characteristics of the growers and characteristics of their respective fields that are

both time-invariant and common across fields. One might be concerned that fields differ in

ways that are correlated with weather, which would introduce omitted variables bias into

our estimation. To alleviate this concern, we estimate Equation 15 using field fixed effects

instead of grower fixed effects. Some fields do not appear multiple times in our sample

because of crop rotation. We drop around 30% of field-year observations because they do

not make a field-level panel. The results from this estimation are similar to those from the

estimation using grower fixed effects.

We also replace the quadratic year trend with a (a) linear year trend, and (b) county-

specific quadratic year trends. The results are robust to the choice of functional form for the

time trend.

Finally, we include as the number of days between planting and harvesting to control

for the season length. The effect of exposure to hot temperatures is virtually unchanged.

Exposure to cool temperatures is estimated to improve yield, quality and revenue although

the effects are statistically indistinguishable from zero.
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Figure A.2: Yield, robustness checks
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(c) Restricted spline with county-specific quadratic year trends
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(d) Restricted spline with season length control

Figure A.2: Yield, robustness checks

Notes: For each figure, the graph at the top of the frame shows the effect of an additional 24 hours in a given temperature

interval on the outcome variable relative to 24 hours at 26◦C. The histogram at the bottom of the frame shows the average

exposure to each temperature interval during the growing season across all fields in all years.
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(b) Restricted spline with linear year trend

Figure A.3: Quality, robustness checks
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(c) Restricted spline with county-specific quadratic year trends
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(d) Restricted spline with season length control

Figure A.3: Quality, robustness checks

Notes: For each figure, the graph at the top of the frame shows the effect of an additional 24 hours in a given temperature

interval on the outcome variable relative to 24 hours at 26◦C. The histogram at the bottom of the frame shows the average

exposure to each temperature interval during the growing season across all fields in all years.
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Figure A.4: Revenue per acre, robustness checks
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(c) Restricted spline with county-specific quadratic year trends
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(d) Restricted spline with season length control

Figure A.4: Revenue per acre, robustness checks

Notes: For each figure, the graph at the top of the frame shows the effect of an additional 24 hours in a given temperature

interval on the outcome variable relative to 24 hours at 26◦C. The histogram at the bottom of the frame shows the average

exposure to each temperature interval during the growing season across all fields in all years.
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D Variation in Weather
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Figure A.5: Histogram of degree days below 10◦C by county, with county-average in red
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Figure A.7: Histogram of degree days above 35◦C by county, with county-average in red

E Results Using Contemporaneous Prices

Our preferred specification uses a measure of price that removes variation in price (and rev-

enue) that stems from market conditions and preserves variation caused by quality only. This

avoids a potential issue of simultaneity bias. Here, we show results that use contemporane-

ous prices that incorporate the actual base price. Compared to other settings, simultaneity

should not be as big of an issue in our setting because the annual base price is set in contracts

before output for that year is realized. Results using contemporaneous prices are similar in

direction but larger in magnitude than results from our preferred specification. This indicates

that our preferred measure of price (and revenue) avoids some bias by removing variation

from market conditions.
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Figure A.8: Results using contemporaneous prices

Notes: For each figure, the graph at the top of the frame shows the effect of an additional 24 hours in a given temperature

interval on the outcome variable relative to 24 hours at 26◦C. The histogram at the bottom of the frame shows the average

exposure to each temperature interval during the growing season across all fields in all years.
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F Piecewise-Linear Degree-Day Specification

The piecewise-linear degree-day model is widely used in the agronomic and agricultural

economic literature. It imposes more structure than flexible, semiparametric models. It also

relies on the econometrician to correctly choose knot locations where the marginal effects

change. However, it is less likely to overfit the data and has been shown in some contexts to

perform better out-of-sample (Schlenker & Roberts, 2009).

To implement the piecewise-linear degree-day functional form, we first need to calculate

degree days. Degree days are related to, but different from, temperature exposure. Tem-

perature exposure measures how long is spent in a given temperature interval. Degree days

measure how long and by how much temperatures exceed the lower bound of a temperature

interval while being truncated at an upper bound (Snyder, 1985). When the temperature

interval is small (e.g. 1◦C), the difference between the two methods is relatively small be-

cause the “how much” dimension is unimportant relative to the “how long” dimension. When

the temperature interval is large, as is the case in a piecewise-linear model, the difference

between the two methods will be large. For example, if we use temperature exposure, we

assume that the damage of one day of exposure at 35◦C is equal to the damage of one day

at 40◦C. If we use degree days, we assume the damage of five days at 35◦C is equal to the

damage of one day at 40◦C. The underlying assumption of degree days is that the effect

of temperature exposure increases linearly with temperature between the lower and upper

bounds.

Degree days can be computed from the temperature exposure vector xit. The expression

for calculating degree days between a lower bound of h and upper bound of h is:

DDit,[h,h] =
h−1∑
j=h

xit,j × (j − h+ 1) (12)

Next, we choose knot locations. In the first set of results, we use knot locations sug-

gested by the agronomic literature. Mid-range temperatures are ideal for yield and quality

outcomes, but these outcomes may be damaged by hot (greater than 35◦C) or cool (less than

10◦C) temperatures (Hartz et al., 2008). Accordingly, we choose two knots at κ1 = 10◦C

and κ2 = 35◦C. We estimate degree days using Equation 12 for each of the three “segments”:

below 10◦C, between 10◦C and 35◦C, and above 35◦C.
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Equation 3 can then be modelled as:

yit = β0 + β1DDit,(−∞,10] + β2DDit,[10,35] + β3DDit,[35,∞) + δzit + αg(i) + ψ(t) + εit (13)

In the second set of results, we use knot locations that correspond to the turning points

in the restricted cubic-spline estimates.
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Figure A.9: Piecewise-linear degree-day results, agronomic knots
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Figure A.9: Piecewise-linear degree-day results, agronomic knots

Notes: For each figure, the graph at the top of the frame shows the effect of an additional 24 hours in a given temperature

interval on the outcome variable relative to 24 hours at 26◦C. The histogram at the bottom of the frame shows the average

exposure to each temperature interval during the growing season across all fields in all years.
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Figure A.10: Piecewise-linear degree-day results, spline knots
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Figure A.10: Piecewise-linear degree-day, spline knots

Notes: For each figure, the graph at the top of the frame shows the effect of an additional 24 hours in a given temperature

interval on the outcome variable relative to 24 hours at 26◦C. The histogram at the bottom of the frame shows the average

exposure to each temperature interval during the growing season across all fields in all years.

G Details on Restricted Cubic-Spline Specification

The B matrix for a cubic-spline combines the B matrix for the cubic polynomial and a K×J
matrix Z. First, define 1×J temperature vectorW =

(
5 6 7 . . . 41

)
. Z is the resulting

matrix after applying the cubic-spline basis function to W with K knots at κ1, . . . , κK .

Bcubic.spline =
(
Bcubic.polynomial Z

)

=


5 25 125 (5− κ1)3+ (5− κ2)3+ . . . (5− κK)3+

6 36 216 (6− κ1)3+ (6− κ2)3+ . . . (6− κK)3+
...

...
...

... . . . ...

41 412 413 (41− κ1)3+ (41− κ2)3+ . . . (41− κK)3+


(14)

Stone & Koo (1985) use the linearity constraints to develop a restricted cubic-spline

function. Using this function, a restricted cubic-spline with K knots requires the estimation

of only K − 1 parameters on temperature (as opposed to K + 3 parameters for the cubic
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spline). Equation 15 is the restricted spline function that we apply toW for i = 1, 2, . . . , K−2

10.

V1 = W

Vi+1 =
(W − κi)3+ − (κK − κK−1)−1{(W − κK−1)3+(κK − κi)− (W − κK)3+(κK−1 − κi)}

(κK − κ1)2

for i = 1, 2, . . . , K − 2

(15)

Together, W and V2 to VK−1 make up the B matrix for the restricted cubic spline, where

Vi,j is the j-th element of the Vi vector.

Brest.cubic.spline =
(
W V2 . . . VK−1

)

=



5 V2,0 . . . VK−1,0

6 V2,1 . . . VK−1,1

7 V2,2 . . . VK−1,2
...

... . . . ...

41 V2,45 . . . VK−1,45


(16)

H Results for Individual Quality Attributes

10For more details, see the Stata manual for the function mkspline
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Figure A.11: Restricted cubic-spline results for individual quality defects
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Figure A.11: Restricted cubic-spline results for individual quality defects
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Figure A.11: Restricted cubic-spline results for individual quality defects

Notes: For each figure, the graph at the top of the frame shows the effect of an additional 24 hours in a given temperature

interval on the outcome variable relative to 24 hours at 26◦C. The histogram at the bottom of the frame shows the average

exposure to each temperature interval during the growing season across all fields in all years.
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Figure A.12: Restricted cubic-spline results for individual quality bonuses
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Figure A.12: Restricted cubic-spline results for individual quality bonuses

Notes: For each figure, the graph at the top of the frame shows the effect of an additional 24 hours in a given temperature

interval on the outcome variable relative to 24 hours at 26◦C. The histogram at the bottom of the frame shows the average

exposure to each temperature interval during the growing season across all fields in all years.
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I Estimated Effects of Control Variables

Table A1: Coefficient estimates on control variables

(1) (2) (3)
log yield log quality log revenue

Precipitation -0.0008∗ -0.0001 -0.0009∗∗∗

(0.0003) (0.0001) (0.0003)

Soil type

Eolian 0.0558 -0.0042 0.0581
(0.1151) (0.0070) (0.1152)

Organic material -0.0478∗∗∗ 0.0057∗ -0.0384∗∗

(0.0136) (0.0027) (0.0136)

Lacustrine -0.0069 0.0445∗∗∗ 0.0629
(0.1485) (0.0065) (0.1475)

Residuum 0.0168 -0.0043 0.0063
(0.0519) (0.0050) (0.0544)

Varietal attributes

Extended field storage variety -0.0063 0.0221∗∗∗ 0.0313∗∗

(0.0092) (0.0029) (0.0111)

Tomato spotted wilt resistant 0.0047 0.0015 0.0036
(0.0081) (0.0024) (0.0099)

High solids 0.0221 -0.0194 -0.0086
(0.0485) (0.0127) (0.0498)

Fusarium Wilt resistant -0.0161 -0.0075∗ -0.0335∗

(0.0144) (0.0037) (0.0167)

Powdery Mildew resistant -0.0457 0.0204∗∗∗ -0.0044
(0.0245) (0.0049) (0.0258)

High yield 0.0115 0.0283∗ 0.0552
(0.0497) (0.0133) (0.0522)

Fusarium Crown Rot resistant -0.0149 0.0008 -0.0163
(0.0362) (0.0110) (0.0507)

Bacterial Spot resistant -0.1381∗ 0.0136 -0.1279∗

(0.0544) (0.0116) (0.0583)

Early maturing -0.0512∗∗ 0.0221∗∗∗ -0.0242
(0.0167) (0.0037) (0.0178)

Thick consistency -0.0240∗ 0.0012 -0.0204
(0.0113) (0.0027) (0.0126)

Thin consistency -0.0530∗∗∗ 0.0051 -0.0471∗∗

(0.0140) (0.0035) (0.0141)

Pear-shaped -0.0940∗ 0.0041 -0.0921∗

(0.0433) (0.0065) (0.0431)

Irrigation technology

Drip irrigation 0.0495∗ -0.0054 0.0496∗

(0.0207) (0.0034) (0.0210)

Furrow irrigation -0.0478∗ 0.0084 -0.0341
(0.0231) (0.0053) (0.0238)

Sprinkler irrigation -0.1102∗∗∗ 0.0081 -0.1148∗∗∗

(0.0199) (0.0083) (0.0315)

Harvesting early -0.0017∗ 0.0001 -0.0018∗

(0.0008) (0.0002) (0.0008)

Year trend 0.0040 0.0008 0.0037
(0.0137) (0.0036) (0.0166)

Year trend sqrd -0.0006 0.0000 -0.0003
(0.0012) (0.0003) (0.0013)
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J Projected Impacts of Climate Change on Revenue

Following the methods outlined in Section 6, we also estimate the impact of climate change

on revenue absent additional adaptation. Under both emissions scenarios, revenue is pro-

jected to decline from its 2011-2021 levels by mid-century and end of century as shown in

Figure A.13. However, these revenue results rely on the strong assumption that price in-

centives and contract structure remain fixed. In reality, the contract structure will evolve

over time, likely in response to climate change. The projected impact of climate change on

revenue should therefore be interpreted with a degree of caution.
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(b) Revenue per acre, end of century

Figure A.13: Projection of climate impacts by midcentury (2041–50) and end of century

(2091–2100) relative to a 2011–20 baseline

Notes: These graphs show the estimated impact of climate change on the outcome variables by midcentury and end of century,

assuming no additional adaptation. Each point is an estimate of the projected impact derived from a single combination

of projection, emissions scenario, and wild-cluster bootstrap replication. The thick black lines represent the median impact

estimate and the shaded grey areas represent the 95% confidence intervals that account for statistical and climate uncertainty.
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K Projected Impacts of Climate Change with Selection

on Quality
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(a) Yield, mid-century
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(b) Yield, end of century

Figure A.14: Projection of climate impacts with selection on quality by by midcentury

(2041–50) and end of century (2091–2100) relative to a 2011–20 baseline
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Figure A.14: Projection of climate impacts with selection on quality by by midcentury

(2041–50) and end of century (2091–2100) relative to a 2011–20 baseline
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Figure A.14: Projection of climate impacts with selection on quality by by midcentury

(2041–50) and end of century (2091–2100) relative to a 2011–20 baseline

Notes: These graphs show the estimated impact of climate change with selection on the outcome variables by midcentury and

end of century, assuming no additional adaptation. These results use yield and quality observations with added selection as

experienced in other settings. Each point is an estimate of the projected impact derived from a single combination of projection,

emissions scenario, and wild cluster bootstrap replication. The thick black lines represent the median impact estimate and the

shaded grey areas represent the 95% confidence intervals that account for statistical and climate uncertainty.
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